
integrity  Service  Excellence

Kevin Stamey
HQ AFMC/ENS

Kevin.stamey@wpafb.af.mil

Presented to 2009 SSTC

Air Force Materiel Command

AF Weapon System
Software Management

Guidebook
AFMC Perspectives

mailto:Kevin.stamey@wpafb.af.mil�

Purpose of AF S/W Guidebook

• Address persistent problems in S/W acquisition
– Unrealistic baselines
– Evolving requirements
– Insufficient risk management
– Inadequate staff
– Ineffective S/W processes
– Lack of Systems Engineering interface with S/W
– Ineffective management controls/oversight

• Recover from atrophy of guidance and policy

2

Software Management
Guidebook Overview

• Software Acquisition Planning
• Software Estimating
• Risk Management
• Source Selection
• Earned Value Management
• Requirements Management
• Acquisition insight and involvement
• Safety Critical Software
• Non-Developmental Software
• Software Assurance
• Configuration Management
• Lifecycle Considerations
• Lessons Learned

3

S/W Acquisition Planning

• Up-front planning is critical
– Begins with concept exploration
– Builds the foundation to measure success

• Prior to contract award
– Conduct independent S/W estimate
– Ensure S/W acquisition strategy is consistent with

the system acq strategy including budget and
schedule

– Draft Computer Resources Life Cycle Management
Plan

• Lifecycle considerations upfront

4

Software Estimating
Difficult First Step

• Realistic S/W cost estimates are necessary to:
– Facilitate realistic overall program planning
– Set reasonable expectations
– Support evaluations of offeror proposals

• AF requires 80-90% confidence of estimates
– Poor record of meeting AF requirement

• High confidence estimates very difficult
– System performance stated in high level terms
– New systems involve unprecedented

systems/capabilities

5

6

High Confidence Estimates
GAO on Software Estimates

“Most often, an unachievable schedule causes software
cost estimates to be far off target. Playing into this
problem is an overwhelming optimism about how quickly
software can be developed. This optimism stems from a
lack of understanding of how staffing, schedule, software
complexity, and technology all interrelate. Furthermore,
optimism about how much savings new technology can
offer and the amount of reuse that can be leveraged from
existing programs also cause software estimates to be
underestimated.”

GAO Cost Assessment Guide, Exposure Draft
July 2007

7

High Confidence Estimates
Attributes of “High Confidence” Estimates

• Based upon well defined, stable requirements
• Accounts for confidence to accurately estimate the software size
• Includes appropriate factors for software size growth during development,

software reuse, etc.
• Based on realistic (historical) productivity rates
• Actual cost/productivity/SLOC, etc. data is on the same program (or very

Analogous Program from same contractor)
• Based on a comprehensive, detailed, realistic, and well documented

software development schedule with durations and logic
• A risk assessment, using Monte Carlo simulation, with dollars included in

estimate to cover 90% cumulative probability value
• Techniques used are appropriate to the program situation and

comprehensiveness of available data
• Independently reviewed and crosschecked at the aggregate level

8

High Confidence Estimates
Risk Factors Affecting Estimates

• Ability to properly size the software development and integration
effort

• Ability to account for growth due to developer derived
requirements and design evolution (typically 40-50% or more)

• Ability to achieve planned levels of software reuse

• Ability to generate accurate estimates for modifying and/or
integrating existing software

• Ability to effectively manage requirements and changes, and to
accommodate impacts to effort and schedule estimates

• Developer capability, including quality of people, processes,
plans; and historical productivity

• Ability to develop software at predicted productivity rate

High Confidence Estimates
Software Estimation Accuracy Vs. Phase

9From “Software Engineering Economics”, Prentice Hall, Barry W. Boehm, 1981

Software
Size and
Program

Baselines
Required

10

High Confidence Estimates
Software Estimating Process

• Obtain information on expected software size (KSLOC), complexity, reliability,
and other factors

• Use commercial estimating models (with cross-checks) to predict the
required software effort (cost & schedule)
– Requires numerous assumptions to set model parameters
– Factor in growth
– Account for risks
– Avoid giving undue credit for unproven assertions
– Use Monte Carlo simulations to arrive at confidence factors
– Be cautious of data and assumptions derived from non-similar projects

• Develop independent estimate prior to RFP release
• Update during source selection

– Use individual offerors’ data
• Solicit detailed software size data in proposal

– Support “Most Probable” cost estimate and schedule risk assessment

11

High Confidence Estimates
Software Estimating Rules of Thumb

Schedule: Software Parametric Models Often Have Calibrated Relationships
Indicating That The Calendar Time, In Months, Required For Average-Case
Software Development Scales Roughly As Five Times The Cube Root Of
The Size In KSLOC. An example from Dr. Barry Boehm, USC:

Average-Case Development Time = 5 x Cube Root (KSLOC)

Effort (Cost): Experience On Real-Time Avionics Software Indicates
Productivity Is Typically In The Range Of 2-4 Hours Per Source Line Of Code

108725033Time (Months)
10,0003,0001,000300Size (KSLOC)

108725033Time (Months)
10,0003,0001,000300Size (KSLOC)

Air Force Experience Suggests This Is A Minimum Schedule

12

High Confidence Estimates
Software Growth

• Primary sources of software growth
– Requirements changes/additions

– Improved understanding of the problem

• AFMC Study (Early 90’s)
– Roughly 25% of changes introduced by government

– Roughly 75% of changes introduced by contractor/developer
• ~ 1/3 of these introduced by contractor-derived specification

changes
• ~ 2/3 of these due to evolution of lower-level design

requirements as the development proceeds

13

High Confidence Estimates
Challenges With Software Reuse

• Development considerations
– Expected reuse often not achieved
– Reuse shortfalls often realized late in development effort
– Expected reuses savings often off-set by additional code

development
• Long-term support considerations

– Reused software typically coded in legacy languages
– Legacy languages require out-year support

• Difficult to find/keep developers experienced in legacy languages
• Supportable System/Software Engineering Environments (S/SEEs)
• Declining vendor support for compilers

• Program 1:
– Initial Program Cost Estimate (PCE) projected $71.2M for EMD

• Assumed 18 month development effort / over 80% reuse of existing
software

– Final PCE projected $145M for EMD
• Estimated 60 month development effort / less than 20% reuse of software

– Terminated for convenience

High Confidence Estimates
Reuse / Size Growth Examples

• Program 2:
– Original software size

• 2,048 total KSLOC; 638 KSLOC new/modified; 1,410 KSLOC reused
(69%)

– Most recent estimate (with 200 KSLOC to go)
• 2,156 total KSLOC; 1,108 KSLOC new/modified; 1,048 KSLOC reused

(48%)

• Program 3:
– Original software reuse projection: 75%

– Actual reuse achieved: 25%

• Program 4:
– Original estimate: 83% reuse
 80 KSLOC new; 170 KSLOC modified; 1,225 KSLOC reused (1475 total

KSLOC)

– Current estimate: 61% reuse
 720 KSLOC new; 45 KSLOC modified; 1,185 KSLOC reused (1950 total

KSLOC)

High Confidence Estimates
Reuse / Size Growth Examples (Cont.)

High Confidence Estimates
An Approach to Reuse Risk and Growth

16

Attribute Low Risk
Little – No Growth

Moderate Risk
Plan for Mod Growth

High Risk
Plan for Sig Growth

Maturity The software is operational in a
similar mission application and

architecture

The software is in lab or flight test and
is not yet operational, or requires

architectural adaptation

The software is under development
and has not been lab or flight tested

Performance Performance and interface
requirements are verified to be

identical

There are some differences in
performance and/or interface

requirements

There are significant differences in
performance and/or interface

requirements

Integration
Complexity

Integration is not complex and
software can be used essentially

“as-is” with little or no development

Integration involves minor, localized
modifications with moderate complexity

Significant or complex modification or
development is required, and/or

changes are dispersed

Quality The software is free of known
defects

The software has minor / non-critical
limitations or defects

The software has critical limitations or
defects that must be corrected

Control The offeror has full control over the
future evolution of the software

The offeror has limited control over the
future evolution of the software

The offeror has no control over the
future evolution of the software

Access The offeror has full access to the
source code

The offeror has limited access to the
source code

The offeror has no access to the
source code

Familiarity The offeror has significant
familiarity or experience with the

software

The offeror has some familiarity or
experience with the software

The offeror has little or no familiarity or
experience with the software

Property Rights
& Licenses

Adequate property rights &
licenses are established

There are uncertainties with property
rights / licenses

There are known issues with property
rights / licenses

Approach Proposed approach for achieving
predicted reuse is sound, and

planned verification is adequate

Proposed approach for achieving
predicted reuse is generally sound, with

some open issues

Proposed approach for achieving
predicted reuse is not substantiated, or

planned verification is inadequate

Process The offeror has an institutionalized
process for making reuse

decisions

The offeror has an informal process for
making reuse decisions

The offeror has no documented
process for making reuse decisions

17

Risk Management

• Apply “Standard” software risks on all programs:
– Software size and growth (drives effort and schedule)
– Software reuse erosion (proposed levels of reuse not

achieved)
– Software producibility (not being realized)

• Especially if expected productivity significantly higher than
historical experience

• Identify and manage other software-related risks

Assume “Standard” Risk Will Occur

18

Risk Management
Thoughts From Tom DeMarco

“There are many individuals and activities within a project
organization whose focus is to reinforce what is going right in
a project; risk management’s job is to point out what can go
wrong. therein lies the problem. Managers and staff who are
committed to making the project succeed and who are working
long hours under intense pressure do not want to be reminded
that one crisis can lead to another. Senior management,
customers and stakeholders often adopt the Nike philosophy:
just do it! their interests lie in minimizing the reality of risk, not
in embracing the fact that risk is a normal part of all projects
that cannot be ignored. Risk management hands them more
reality than they want to deal with.”

Tom DeMarco
Principal of the Atlantic Systems Guild &

Noted Software Author, Educator, and Consultant

Risk must be managed not avoided

19

Risk Management
Typical Software-Related Risks

1. Incompatible development performance, effort and schedule
2. Rapid staff buildup at the start of new development programs
3. Complex, poorly defined, incomplete, or unstable system or

software requirements
4. Hand-off of software requirements from Systems Engineering

without adequate interaction
5. Inability to agree on and control build or spiral content (AKA, Lack

of a baseline)
6. COTS/GOTS availability, suitability, integration, and sustainment
7. Integration-heavy effort (significant integration effort for existing

components)
8. Concurrent hardware development or requirements that drive the

use of unproven tools or technology
9. Extensive security requirements (Multi-level security)
10. Unprecedented system and software architectures

20

Risk Management
Typical Software-Related Risks (Cont.)

11. Long-duration development timeframes
12. Technical obsolescence of computing architectures and

hardware
13. Safety-critical requirements
14. Uncontrolled, unknown, or untrusted sources of software

(foreign developers, open source, etc.)
15. Government Furnished Equipment (GFE) with unknown

performance capability
16. Use of tools, methods, and technologies with which the

developer has no previous experience
17. Developer attempting to build systems outside their domain

of expertise
18. Multiple developers and subcontractors teaming to develop

complex software intensive systems which must be tailored
and integrated into a total system capability

Source Selection

• Ensure offerors understand the software task
• Ensure capability and capacity are consistent with

overall software effort
• Offer’s proposal for Software intensive Systems

should be evaluated for:
– Domain experience
– Soundness of approach
– Process maturity
– Past performance with similar S/W efforts
– Program realism

• Commitment to proposed process should be evident in
S/W Dev Plan, integrated Master Plan and Statement of
Work

21

22

Selecting a Capable Developer
What CMM/CMMI Levels Tell Us (or not)

• Levels are good indicators of potential organizational
performance

• They describe how the next project could perform
based on a sampling of existing projects

• Capability Levels and Maturity Levels Reside At the
Organizational Level (Corporation, Major Division)
and Are Not An indication of How Any individual
Project Is Performing

• Source:
SEI

23

Capable Developer
Policy on Levels

• There Is No OSD Or Air Force Policy Requiring A
Minimum Maturity Level To Do Business
“DoD does not place significant emphasis on
capability level or maturity level ratings, but rather
promotes CMMI as a tool for internal process
improvement. This lack of emphasis on ratings is
prudent in the light of findings that not all suppliers
are exhibiting behavior consistent with their attained
CMMI maturity level rating.”

Mark Schaeffer & Kristen Baldwin
Defense AT&L: July-August 2007

CMMI as a Tool

• Specify requirements for process adherence to
important process areas
– Use Section H clause to allow government to

conduct process reviews
– Gain insight to how processes have been

implemented on the program
• CMMI results can be requested

– Full Appraisal Disclosure Statement for
assessments accomplished in the last 3 years

– Also check SEI’s Published Appraisal Results Site

24

Evaluating Capability
Based on Past Performance

Consider the contractor’s success in:
• Planning a software development, integration, and testing effort

that had compatible cost, schedule, and performance baselines
• Delivering expected software driven capabilities on cost and on

schedule
• Staffing with the domain expertise and software knowledge, skills,

and abilities needed to execute the contract across the lifecycle
• Achieving software assurance
• Consistent application of documented software engineering and

management processes, including technical reviews, in alignment
with contract requirements

25

26

Source Selection
Proprietary Software and Rights in Data

• Identify proprietary software at the start of
development

• Needed rights are dependent on support approach
– COTS brings special problems

• Government must acquire rights to modify Operational
Software to be supported organically, by a third party,
or through public/private partnerships

• Software developed by the program
– Historically - unlimited rights

• Other software - negotiate adequate rights

27

Earned Value Management

• Software development produces measurable products
– EVMS should be applied to manage and status S/W

development

• Identify software through the WBS to the work package
level
– Work packages are the source of schedule and cost reporting

data

• Place software in the WBS consistent with location of
software in the systems architecture
– May need special reporting requirements if software is too low

in the WBS (avoid roll-up / lost visibility)

• Determine software status by measuring technical
progress and earned value at the work package level

28

Earned Value Management
Approach (Cont.)

• Solicit Work Package Format in the RFP and Require
government access to work packages

• Become familiar with the contractor’s EVMS system
• Understand method used to take earned value in

software work packages
• Work packages must include activities with defined

events
– Objectively verifiable products
– Established earned value
– Schedule

• Use earned value system to provide objective insight
into cost and schedule performance
– Not at aggregate level

Requirements Management

• Requirement basics
– Single and verifiable statements
– Vertical traceability to capability requirement
– Horizontal traceability to ensure complete functionality
– Allocated to a specific configuration item
– Ensure derived requirements are necessary, sufficient and

consistent with system requirements
– Highly recommend use of RM tools

• Requirements analysis should evaluate:
– Completeness
– Feasibility
– Trade space
– Verifiability/Testability
– Human factors
– System and SoS architecture 29

Requirements Management
During Incremental Dev

• Approved H/W & S/W interface specifications
• Allocate requirements into pre-planned builds

– Expectation management
• When two or more concurrent increments are

being developed
– Adequate controls required to prevent divergence
– Ensure adequate resources for each increment

Increment 1

Increment 2

Increment 3
A/C

Software

Munitions

Mission
Planning

Size Control

Objective of Size Control:
• Prevent uncontrolled growth in software

development
• Validate new requirements as necessary to

meet overall system performance
requirements

• Avoid related growth in computer processing
resources

• Base decisions on cost, schedule and
performance impacts

31

Plan For Size Control

• Design system/software architecture for
inevitable growth

• Plan for growth as requirements are
decomposed and derived requirements
emerge
– Validate necessity against system requirements
– Manage growth to the planned growth estimates

• Defer functionality not essential to system
requirements, unless it was part of the plan

• Use formal ECP to adjust cost and schedule

323232

Acquisition insight &
involvement

• Identify trends in measured performance
– Software Metrics

• Proactively identify and manage risk
– Quantitative and Qualitative indicators
– Monitor/Track defect and problem reports to closure

• Address problems as they arise
– Active participation in program reviews
– Consider participation in peer review, integration

testing

33

34

Metrics

• Objective: Quantitative insight into developer
activities
– Mutually agree on and implement

elected software metrics
– Add unique metrics, as needed

• Software metrics information
should be available, ideally,
through on-line, electronic means

Air Force Core Metrics
 Software Size
 Software Development

Effort
 Software Development

Schedule
 Software Defects
 Software Requirements
 Software Staffing
 Software Progress
 Computer Resources

Utilization

35

Metrics
Effective Metrics Characteristics

• Are integral to the program and directly related to the
software development process

• Address product, process, and project
• Include realistic, achievable planned profiles
• Include trend data and management action thresholds
• Are actually used to manage the program

– Are collected, analyzed, reported

– Drive further assessment/decision/action when warranted

• Are clearly understandable
• Clearly portray variances between planned and actual

performance

36

Metrics
Effective Metrics Characteristics (Cont.)

• Support the assessment of the impact of proposed
changes on the program

• Are used (in the form of past actuals) when planning
new efforts

• Evolve and change when necessary

• For Metrics Examples:
 See “Practical Systems and Software Measurement”

Guidebook
http://www.psmsc.com/psmguide.asp

37

Safety-Critical Software
Special Considerations

• System safety hazard analysis
• Isolation/partitioning of flight-critical computer resources

from other processing elements or functions
– If a portion of a Computer Software Configuration Item (CSCI) is

designated as safety critical, the entire CSCI is safety critical
– If the software is safety-critical, the associated hardware and

system is safety-critical

• Fault-containment approaches
– Redundancy, extensive monitors, N-version programming, etc.

• Evaluation / verification methodology & discipline
– Structural coverage analysis, safety critical function thread testing,

Failure Modes Effects Testing (FMET), etc.

Safety-Critical Software (Cont.)
Testing

• Safety-critical software requires testing, for each
build/increment, from the lowest level to system level
integration
– Test the lowest level of software design at the Computer

Software Unit (CSU) level
– Test functional groupings of CSUs and interdependencies at the

Computer Software Component (CSC) level
– Test all software requirements at the CSCI level
– Test the integration of the CSCIs at the Operational Flight

Program (OFP) level
– Address the integration of hardware and software in a

representative integration lab at the System Level Testing (SLT)
level

– Insert failures into the actual hardware, software, and system
during Failure Modes Effects Testing (FMET)

– Ensure changes to previously delivered safety-critical software
are fully qualified 38

Non-Developmental Software

• Robust systems engineering essential
– Risk must be identified and managed

• Security and assurance critical for NDS
• Market forces are the drivers not program needs

– NDS must be analyzed, tested and integrated
thoroughly

• Known and unknown defects
• How/When defects are corrected

– Consider lifecycle issues warranties, licenses,
update requirements, long term support

– Open Source Software
• Limited experience with DoD embedded systems
• Be aware of OSS licensing requirements

39

Software Assurance

• S/W must be designed to meet performance and
security goals in spite of vulnerabilities to:
– Cyber attacks, insiders, physical attacks etc
– Threats that can exist during any phase of the lifecycle

• Software Assurance is justified confidence that:
– Software functions as intended
– Free of exploitable vulnerabilities, either intentionally or

unintentionally designed or inserted
• Measure of confidence is achieved through:

– Planned, systematic set of multi-disciplinary analysis

• Software assurance utilizes specific technologies and
processes to manage the risk of exploitable
vulnerabilities

40

Software Assurance & Anti-Tamper
(Cont.)

• Anti-Tamper: Prevents reverse engineering
and exploitation of military critical software
technologies in order to deter:
– Technology transfer
– Alteration of system capability
– Development of countermeasure to U.S. systems

• Anti-Tamper includes processes, activities,
and material implementations

• Guidebook identifies Anti-Tamper process
steps required by DoD policy and Milestone B
criteria

41

Configuration Management

• Systems Config Management Plan (CMP) should
address S/W unique CM such as
– Approval authorities for software related changes
– Disposition/tracking defects and deficiency reports
– Version control for pre/post release of code
– Release management to fielded assets

• Establish what is under configuration control
– Including CSCI, tools, equipment, labs, documentation

• Establish when software products will be under
configuration control by the government

• Consider the use of Automated Computer Program
Identification Number System (ACPINS)

42

Lifecycle Support

• Software support planning
– Begin early in acquisition
– Document and coordinate with relevant stakeholders

• Support planning based on Source of Repair
Assignment Process (SORAP)
– Included sustainment organization up front
– Indentify and agree on future roles/responsibilities
– Establish transition criteria and timing
– Ensure sustainment facilities plans match transition planning
– Procure equipment, labs and tools as required
– Ensure contractor developed labs/tools are documented to

support transition
• Establish a strategy to respond to hardware and

software obsolescence
43

Life Cycle Support (Cont)

• Acquire necessary engineering data
– Minimum set of data support the full lifecycle
– Get concurrence from sustainer

• Post Deployment Software Support
– Identify required Systems/Software Engineering Environments

for the complete software effort
• Development and test tools

• Consider long term viability of computer system
architecture
– Ease of refresh or technology insertion

• Long term viability of selected language(s)
– Availability of programmers
– Compiler and tool support

44

45

Lessons Learned

• Guidebook is based on proven lessons learned
• Use available resources to benefit from lessons

learned
• Contribute to lessons learned repository
• Address:

– Estimates Vs. Actuals for software size, effort, and schedule
– Program risks and mitigation approaches
– Functional requirements changes/additions
– Schedule perturbations
– Other program events that contributed to successes and

challenges

Get The Guide

• AF Weapon Systems Software Management Guidebook
– Available on the AF Portal at the Science, Technology &

Engineering Functional Home Page

https://www.my.af.mil/gcss-af/USAAF/AFP40/d/1075546731/Files/editorial/WeaponSystemsSWManagementGuidebook.pdf

46

	AF Weapon System Software Management Guidebook�AFMC Perspectives
	Purpose of AF S/W Guidebook
	Software Management Guidebook Overview
	S/W Acquisition Planning
	Software Estimating�Difficult First Step
	High Confidence Estimates�GAO on Software Estimates
	High Confidence Estimates�Attributes of “High Confidence” Estimates
	High Confidence Estimates�Risk Factors Affecting Estimates
	High Confidence Estimates�Software Estimation Accuracy Vs. Phase
	High Confidence Estimates�Software Estimating Process
	High Confidence Estimates�Software Estimating Rules of Thumb
	High Confidence Estimates�Software Growth
	High Confidence Estimates�Challenges With Software Reuse
	High Confidence Estimates� Reuse / Size Growth Examples
	High Confidence Estimates�Reuse / Size Growth Examples (Cont.)
	High Confidence Estimates�An Approach to Reuse Risk and Growth
	Risk Management
	Risk Management�Thoughts From Tom DeMarco
	Risk Management�Typical Software-Related Risks
	Risk Management�Typical Software-Related Risks (Cont.)
	Source Selection
	Selecting a Capable Developer�What CMM/CMMI Levels Tell Us (or not)
	Capable Developer�Policy on Levels
	CMMI as a Tool
	Evaluating Capability �Based on Past Performance
	Source Selection�Proprietary Software and Rights in Data
	Earned Value Management
	Earned Value Management�Approach (Cont.)
	Requirements Management
	Requirements Management �During Incremental Dev
	Size Control
	Plan For Size Control
	Acquisition insight & involvement
	Metrics
	Metrics�Effective Metrics Characteristics
	Metrics�Effective Metrics Characteristics (Cont.)
	Safety-Critical Software� Special Considerations
	Safety-Critical Software (Cont.)�Testing
	Non-Developmental Software
	Software Assurance
	Software Assurance & Anti-Tamper (Cont.)
	Configuration Management
	Lifecycle Support
	Life Cycle Support (Cont)
	Lessons Learned
	Get The Guide
	Slide Number 47

